Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566066

RESUMO

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Assuntos
Doenças Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Musculares/metabolismo , Citoesqueleto/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia
2.
J Neuroinflammation ; 21(1): 85, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582897

RESUMO

Homer1a and A2 astrocytes are involved in the regulation of inflammation induced by intracerebral hemorrhage (ICH). However, there is no anticipated treatment strategy based on the anti-inflammatory effect of Homer1a and A2 astrocytes. Here, we successfully induced A2 astrocytes in vitro, and then we report an efficient method to prepare Homer1a+ EVs derived from A2 astrocytes which making it more stable, safe, and targetable to injured neurons. Homer1a+ EVs promotes the conversion of A1 to A2 astrocytes in ICH mice. Homer1a+ EVs inhibits activation and nuclear translocation of NF-κB, thereby regulating transcription of IL-17A in neurons. Homer1a+ EVs inhibits the RAGE/NF-κB/IL-17 signaling pathway and the binding ability of IL-17A: IL17-AR and RAGE: DIAPH1. In addition, Homer1a+ EVs ameliorates the pathology, behavior, and survival rate in GFAPCreHomer1fl/-Homer1a± and NestinCreRAGEfl/fl ICH mice. Our study provides a novel insight and potential for the clinical translation of Homer1a+ EVs in the treatment of ICH.


Assuntos
Vesículas Extracelulares , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Interleucina-17 , Hemorragia Cerebral/metabolismo , Transdução de Sinais , Vesículas Extracelulares/metabolismo
3.
J Inflamm Res ; 17: 1337-1347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434583

RESUMO

Purpose: We aim to explore the relationship between Homer1 and the outcomes of AIS patients at 3 months. Patients and Methods: This prospective cohort study was conducted from May 2022 to March 2023. In this study, we investigated the association between serum Homer1 levels by enzyme-linked immunosorbent assay at admission and functional outcomes of patients at 3 months after AIS. Results: Overall, 89 AIS patients (48 good outcomes and 41 poor outcomes) and 83 healthy controls were included. The median serum Homer1 level of patients at admission with poor outcomes was significantly higher than that of patients with good outcomes (39.33 vs 33.15, P<0.001). Serum Homer1 levels at admission were positively correlated with the severity of AIS (r = 0.488, P<0.001). The optimal cutoff of serum Homer1 level as an indicator for an auxiliary diagnosis of 3 months functional outcomes was 35.07 pg/mL, with a sensitivity of 75.0% and a specificity of 92.7% (AUC 0.837; 95% CI [0.744-0.907]; P<0 0.001). The odds ratio of MRS > 2 predicted by the level of serum Homer1 after 3 months was 1.665 (1.306-2.122; P<0.001). Conclusion: Serum concentrations of Homer1 have a high predictive value for neurobehavioral outcomes after acute ischemic stroke. Higher serum Homer1 levels (>35.07 pg/mL) were positively associated with poor functional outcomes of patients 3 months post-stroke.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38355915

RESUMO

AIM: This study aims to utilize machine learning (ML) and logistic regression (LR) models to predict surgical outcomes among patients with traumatic brain injury (TBI) based on admission examination, assisting in making optimal surgical treatment decision for these patients. METHOD: We conducted a retrospective review of patients hospitalized in our department for moderate-to-severe TBI. Patients admitted between October 2011 and October 2022 were assigned to the training set, while patients admitted between November 2022 and May 2023 were designated as the external validation set. Five ML algorithms and LR model were employed to predict the postoperative Glasgow Outcome Scale (GOS) status at discharge using clinical and routine blood data collected upon admission. The Shapley (SHAP) plot was utilized for interpreting the models. RESULTS: A total of 416 patients were included in this study, and they were divided into the training set (n = 396) and the external validation set (n = 47). The ML models, using both clinical and routine blood data, were able to predict postoperative GOS outcomes with area under the curve (AUC) values ranging from 0.860 to 0.900 during the internal cross-validation and from 0.801 to 0.890 during the external validation. In contrast, the LR model had the lowest AUC values during the internal and external validation (0.844 and 0.567, respectively). When blood data was not available, the ML models achieved AUCs of 0.849 to 0.870 during the internal cross-validation and 0.714 to 0.861 during the external validation. Similarly, the LR model had the lowest AUC values (0.821 and 0.638, respectively). Through repeated cross-validation analysis, we found that routine blood data had a significant association with higher mean AUC values in all ML and LR models. The SHAP plot was used to visualize the contributions of all predictors and highlighted the significance of blood data in the lightGBM model. CONCLUSION: The study concluded that ML models could provide rapid and accurate predictions for postoperative GOS outcomes at discharge following moderate-to-severe TBI. The study also highlighted the crucial role of routine blood tests in improving such predictions, and may contribute to the optimization of surgical treatment decision-making for patients with TBI.

5.
J Clin Neurosci ; 120: 36-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181552

RESUMO

AIM: This study aims to develop prediction models for in-hospital outcomes after non-surgical treatment among patients with moderate-to-severe traumatic brain injury (TBI). METHOD: We conducted a retrospective review of patients hospitalized for moderate-to-severe TBI in our department from 2011 to 2020. Five machine learning (ML) algorithms and the conventional logistic regression (LR) model were employed to predict in-hospital mortality and the Glasgow Outcome Scale (GOS) functional outcomes. These models utilized clinical and routine blood data collected upon admission. RESULTS: This study included a total of 196 patients who received only non-surgical treatment after moderate-to-severe TBI. When predicting mortality, ML models achieved area under the curve (AUC) values of 0.921 to 0.994 using clinical and routine blood data, and 0.877 to 0.982 using only clinical data. In comparison, LR models yielded AUCs of 0.762 and 0.730 respectively. When predicting the GOS outcome, ML models achieved AUCs of 0.870 to 0.915 using clinical and routine blood data, and 0.858 to 0.927 using only clinical data. In comparison, the LR model yielded AUCs of 0.798 and 0.787 respectively. Repeated internal validation showed that the contributions of routine blood data for prediction models may depend on different prediction algorithms and different outcome measurements. CONCLUSION: The study reported ML-based prediction models that provided rapid and accurate predictions on short-term outcomes after non-surgical treatment among patients with moderate-to-severe TBI. The study also highlighted the superiority of ML models over conventional LR models and proposed the complex contributions of routine blood data in such predictions.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Escala de Resultado de Glasgow , Modelos Logísticos , Hospitais , Aprendizado de Máquina , Prognóstico
6.
Neurosci Bull ; 40(1): 35-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37608137

RESUMO

Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.


Assuntos
Hipóxia , Estresse Oxidativo , Camundongos , Animais , Autofagia , Cognição , Sirolimo/uso terapêutico
7.
Inflamm Res ; 73(1): 131-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091015

RESUMO

OBJECTIVE: Proinflammatory necroptosis is the main pathological mechanism of ischemic stroke. Homer scaffolding protein 1 (Homer1) is a postsynaptic scaffolding protein that exerts anti-inflammatory effects in most central nervous system diseases. However, the relationship between Homer1 and proinflammatory necroptosis in ischemic stroke remains unclear. AIM: This study aimed to investigate the role of Homer1 in ischemia-induced necroptosis. METHODS: C57BL/6 mice were used to establish a model of permanent middle cerebral artery occlusion model (pMCAO). Homer1 knockdown mice were generated using adeno-associated virus (AAV) infection to explore the role of Homer1 and its impact on necroptosis in pMCAO. Finally, Homer1 protein was stereotaxically injected into the ischemic cortex of Homer1flox/flox/Nestin-Cre +/- mice, and the efficacy of Homer1 was investigated using behavioral assays and molecular biological assays to explore potential mechanisms. RESULTS: Homer1 expression peaked at 8 h in the ischemic penumbral cortex after pMCAO and colocalized with neurons. Homer1 knockdown promoted neuronal death by enhancing necroptotic signaling pathways and aggravating ischemic brain damage in mice. Furthermore, the knockdown of Homer1 enhanced the expression of proinflammatory cytokines. Moreover, injection of Homer1 protein reduced necroptosis-induced brain injury inhibited the expression of proinflammatory factors, and ameliorated the outcomes in the Homer1flox/flox/Nestin-Cre+/- mice after pMCAO. CONCLUSIONS: Homer1 ameliorates ischemic stroke by inhibiting necroptosis-induced neuronal damage and neuroinflammation. These data suggested that Homer1 is a novel regulator of neuronal death and neuroinflammation.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , AVC Isquêmico/complicações , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Nestina/metabolismo , Nestina/farmacologia , Doenças Neuroinflamatórias , Necroptose , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/patologia , Neurônios/patologia , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Proteínas de Arcabouço Homer/farmacologia
9.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069134

RESUMO

Retinal ischemia, after cerebral ischemia, is an easily overlooked pathophysiological problem in which inflammation is considered to play an important role. Pyroptosis is a kind of cell death pattern accompanied by inflammation. Homer scaffold protein 1 (Homer1) has anti-inflammation properties and protects against ischemic injury. However, little is known about pyroptosis following middle cerebral artery occlusion (MCAO)-induced retinal ischemia and the regulatory mechanisms involved by Homer1 for the development of pyroptosis. In the present study, retinal ischemic injury was induced in mice by permanent MCAO in vivo, and retinal ganglion cells (RGCs) were subjected to Oxygen and Glucose Deprivation (OGD) to establish an in vitro model. It was shown that TXNIP/NLRP3-mediated pyroptosis was located predominantly in RGCs, which gradually increased after retinal ischemia and peaked at 24 h after retinal ischemia. Interestingly, the RGCs pyroptosis occurred not only in the cell body but also in the axon. Notably, the occurrence of pyroptosis coincided with the change of Homer1 expression in the retina after retinal ischemia and Homer1 also co-localized with RGCs. It was demonstrated that overexpression of Homer1 not only alleviated RGCs pyroptosis and inhibited the release of pro-inflammatory factors but also led to the increase in phosphorylation of AMPK, inhibition of ER stress, and preservation of visual function after retinal ischemia. In conclusion, it was suggested that Homer1 may protect against MCAO-induced retinal ischemia and RGCs pyroptosis by inhibiting endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation after MCAO-induced retinal ischemia.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Doenças Retinianas , Animais , Camundongos , Isquemia Encefálica/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Arcabouço Homer/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Traumatismo por Reperfusão/metabolismo , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo
10.
Transl Oncol ; 37: 101756, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595394

RESUMO

Glioma is the most common tumor of the nervous system. The diffuse growth and proliferation of glioma poses great challenges for its treatment. Here, Transcriptomic analysis revealed that Rac GTPase activating protein 1 (RACGAP1) is highly expressed in glioma. RACGAP1 has been shown to play an important role in the malignant biological progression of a variety of tumors. However, the underlying role and mechanism in glioma remain poorly understood. By using quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry and Orthotopic mouse xenografts, we confirmed that knockdown of RACGAP1 impeded cell proliferation in glioma and prolonged the survival of orthotopic mice. Interestingly, we also found that inhibiting the expression of RACGAP1 reduced the expression of minichromosome maintenance 3 (MCM3) through RNA-seq and rescue assay, while Yin Yang 1 (YY1) transcriptionally regulated RACGAP1 expression. Furthermore, T7 peptide-decorated exosome (T7-exo) is regard as a promising delivery modality for targeted therapy of glioma, and the T7-siRACGAP1-exo significantly improved the survival time of glioma bearing mice. These results suggested that targeting RACGAP1 may be a potential strategy for glioma therapy.

11.
J Pharm Anal ; 13(6): 616-624, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37440907

RESUMO

Glioblastoma (GBM) is a lethal cancer with limited therapeutic options. Dendritic cell (DC)-based cancer vaccines provide a promising approach for GBM treatment. Clinical studies suggest that other immunotherapeutic agents may be combined with DC vaccines to further enhance antitumor activity. Here, we report a GBM case with combination immunotherapy consisting of DC vaccines, anti-programmed death-1 (anti-PD-1) and poly I:C as well as the chemotherapeutic agent cyclophosphamide that was integrated with standard chemoradiation therapy, and the patient remained disease-free for 69 months. The patient received DC vaccines loaded with multiple forms of tumor antigens, including mRNA-tumor associated antigens (TAA), mRNA-neoantigens, and hypochlorous acid (HOCl)-oxidized tumor lysates. Furthermore, mRNA-TAAs were modified with a novel TriVac technology that fuses TAAs with a destabilization domain and inserts TAAs into full-length lysosomal associated membrane protein-1 to enhance major histocompatibility complex (MHC) class I and II antigen presentation. The treatment consisted of 42 DC cancer vaccine infusions, 26 anti-PD-1 antibody nivolumab administrations and 126 poly I:C injections for DC infusions. The patient also received 28 doses of cyclophosphamide for depletion of regulatory T cells. No immunotherapy-related adverse events were observed during the treatment. Robust antitumor CD4+ and CD8+ T-cell responses were detected. The patient remains free of disease progression. This is the first case report on the combination of the above three agents to treat glioblastoma patients. Our results suggest that integrated combination immunotherapy is safe and feasible for long-term treatment in this patient. A large-scale trial to validate these findings is warranted.

12.
J Biomech ; 156: 111674, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37300977

RESUMO

Diffuse axonal injury (DAI) caused by acceleration is one of the most prominent forms of blast-induced Traumatic Brain Injury. However, the mechanical mechanism and indicator of axonal deformation-induced injury under blast-type acceleration with high peak and short duration are unclear. This study constructed a multilayer head model that can reflect the response characteristics of translational and rotational acceleration (the peak time of which is within 0.5 ms). Based on von Mises stress, axonal strain and axonal strain rate indicators, the physical process of axonal injury is studied, and the vulnerable area under blast-type acceleration load is given. In the short term (within 1.75 ms), dominated by sagittal rotational acceleration peaks, the constraint of falx and tentorium rapidly imposes the inertial load on the brain tissue, resulting in a high-rate deformation of axons (axonal strain rate of which exceed 100 s-1). For a long term (after 1.75 ms), fixed-point rotation of the brain following the head causes excessive distortion of brain tissue (von Mises stress of which exceeds 15 kPa), resulting in a large axonal stretch strain where the main axonal orientation coincides with the principal strain direction. It is found that the axonal strain rate can better indicate the pathological axonal injury area and coincides with external inertial loading in the risk areas, which suggests that DAI under blast-type acceleration overload is mainly caused by the rapid axonal deformation instead of by the excessive axonal strain. The research in this paper helps understand and diagnose blast-induced DAI.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Lesão Axonal Difusa , Humanos , Encéfalo/fisiologia , Axônios , Aceleração
13.
Nucl Med Commun ; 44(8): 703-708, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184491

RESUMO

BACKGROUND: Airway stenosis secondary to non-small cell lung cancer (NSCLC) is one of the severe complications that can lead to life-threatening outcomes. OBJECTIVE: To investigate the clinical utility of computed tomography (CT)-guided interstitial implantation of radioactive I-125 seeds in the treatment of hilar airway stenosis caused by NSCLC. METHODS: The cases of hilar airway stenosis caused by NSCLC in our hospital from 2017 to 2022 were collected and divided into observation and control groups. Both groups underwent conventional lung cancer treatment, and the observation group was treated with CT-guided interstitial implantation of radioactive I-125 seeds. The mean tumor diameter, hilar airway stenosis, and obstructive pneumonia scores at 3 months after treatment were compared between the two groups. RESULTS: After 3 months of treatment, the mean tumor diameter (28.8 ±â€…9.3 mm vs 49.33 ±â€…16.75 mm, P  < 0.001), hilar airway stenosis (20.55 ±â€…30.36% vs 84.85 ±â€…26.19%, P  < 0.001), and obstructive pneumonia score (2.19 ±â€…1.41 vs 3.48 ±â€…1.12, P  < 0.001) of the observation group were significantly lower than those of the control group. CONCLUSION: CT-guided interstitial implantation of I (125) radioactive seeds in the treatment of hilar airway stenosis caused by NSCLC can effectively reduce the tumor volume, relieve airway stenosis, and alleviate the associated obstructive pneumonia and has a certain value of application in the clinic.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radioisótopos do Iodo/uso terapêutico , Constrição Patológica/tratamento farmacológico , Tomografia Computadorizada por Raios X
14.
Exp Mol Med ; 55(6): 1203-1217, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37258577

RESUMO

The tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play critical roles in the growth of glioblastoma (GBM). However, the molecular mechanism underlying the relationship between TRIM22 and MAPK signaling remains unclear. Here, we found that TRIM22 binds to exon 2 of the sphingosine kinase 2 (SPHK2) gene. An ERK1/2-driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through the RING-finger domain. TRIM22 binds to Raf-1, a negative regulator of MAPK signaling, and accelerates its degradation by inducing K48-linked ubiquitination, which is related to the CC and SPRY domains of TRIM22 and the C1D domain of Raf-1. In vitro and in vivo, an SPHK2 inhibitor (K145), an ERK1/2 inhibitor (selumetinib), and the nonphosphorylated mutant Raf-1S338A inhibited GBM growth. In addition, deletion of the RING domain and the nuclear localization sequence of TRIM22 significantly inhibited TRIM22-induced proliferation of GBM cells in vivo and in vitro. In conclusion, our study showed that TRIM22 regulates SPHK2 transcription and activates MAPK signaling through posttranslational modification of two critical regulators of MAPK signaling in GBM cells.


Assuntos
Glioblastoma , Proteínas Quinases Ativadas por Mitógeno , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Glioblastoma/genética , Transdução de Sinais , Linhagem Celular , Proliferação de Células , Antígenos de Histocompatibilidade Menor , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas Repressoras/genética
15.
Front Oncol ; 13: 1089787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816968

RESUMO

Background: Efforts to resection of glioma lesions located in brain-eloquent areas must balance the extent of resection (EOR) and functional preservation. Currently, intraoperative direct electrical stimulation (DES) is the gold standard for achieving the maximum EOR while preserving as much functionality as possible. However, intraoperative DES inevitably involves risks of infection and epilepsy. The aim of this study was to verify the reliability of individual-target transcranial magnetic stimulation (IT-TMS) in preoperative mapping relative to DES and evaluate its effectiveness based on postsurgical outcomes. Methods: Sixteen language-eloquent glioma patients were enrolled. Nine of them underwent preoperative nTMS mapping (n=9, nTMS group), and the other seven were assigned to the non-nTMS group and did not undergo preoperative nTMS mapping (n=7). Before surgery, online IT-TMS was performed during a language task in the nTMS group. Sites in the cortex at which this task was disturbed in three consecutive trials were recorded and regarded as positive and designated nTMS hotspots (HSnTMS). Both groups then underwent awake surgery and intraoperative DES mapping. DES hotspots (HSDES) were also determined in a manner analogous to HSnTMS. The spatial distribution of HSnTMS and HSDES in the nTMS group was recorded, registered in a single brain template, and compared. The center of gravity (CoG) of HSnTMS (HSnTMS-CoG)-based and HSDES-CoG-based diffusion tensor imaging-fiber tracking (DTI-FT) was performed. The electromagnetic simulation was conducted, and the values were then compared between the nTMS and DES groups, as were the Western Aphasia Battery (WAB) scale and fiber-tracking values. Results: HSnTMS and HSDES showed similar distributions (mean distance 6.32 ± 2.6 mm, distance range 2.2-9.3 mm, 95% CI 3.9-8.7 mm). A higher fractional anisotropy (FA) value in nTMS mapping (P=0.0373) and an analogous fiber tract length (P=0.2290) were observed. A similar distribution of the electric field within the brain tissues induced by nTMS and DES was noted. Compared with the non-nTMS group, the integration of nTMS led to a significant improvement in language performance (WAB scores averaging 78.4 in the nTMS group compared with 59.5 in the non-nTMS group, P=0.0321 < 0.05) as well as in brain-structure preservation (FA value, P=0.0156; tract length, P=0.0166). Conclusion: Preoperative IT-TMS provides data equally crucial to DES and thus facilitates precise brain mapping and the preservation of linguistic function.

16.
Biofabrication ; 15(2)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36812580

RESUMO

Although autologous bone (AB) grafting is considered to be the gold standard for cranioplasty, unresolved problems remain, such as surgical-site infections and bone flap absorption. In this study, an AB scaffold was constructed via three-dimensional (3D) bedside-bioprinting technology and used for cranioplasty. To simulate the skull structure, a polycaprolactone shell was designed as an external lamina, and 3D-printed AB and a bone marrow-derived mesenchymal stem cell (BMSC) hydrogel was used to mimic cancellous bone for bone regeneration. Ourin vitroresults showed that the scaffold exhibited excellent cellular affinity and promoted osteogenic differentiation of BMSCs in both two-dimensional and 3D culture systems. The scaffold was implanted in beagle dog cranial defects for up to 9 months, and the scaffold promoted new bone and osteoid formation. Furtherin vivostudies indicated that transplanted BMSCs differentiated into vascular endothelium, cartilage, and bone tissues, whereas native BMSCs were recruited into the defect. The results of this study provide a method for bedside bioprinting of a cranioplasty scaffold for bone regeneration, which opens up another window for clinical applications of 3D printing in the future.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Cães , Tecidos Suporte/química , Regeneração Óssea , Diferenciação Celular , Crânio/cirurgia , Impressão Tridimensional , Engenharia Tecidual/métodos
17.
World J Clin Cases ; 11(1): 225-232, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36687183

RESUMO

BACKGROUND: High flow priapism (HFP) is a rare type of priapism. Perineal trauma is the most common cause of HFP. Trauma-induced penile artery injury may lead to an arterial-cavernosal fistula, whereas persistent irregular arterial blood flow entering the corpora cavernosum can cause a persistent penile erection. The routine treatment of HFP focuses on addressing the abnormal penile erectile status and avoiding post-treatment erectile dysfunction. Interventional embolization is an important therapeutic modality for HFP, and bilateral embolization therapy is currently the most commonly used technique for patients with bilateral cavernous artery fistulas; however, unilateral embolization therapy has yet to be reported. CASE SUMMARY: Herein, we report of the case of a 26-year-old Chinese male who presented with a persistent abnormal erection for 12 h after perineal impact injury. Medical history, cavernous arterial blood gas analysis and radiological examinations led to a diagnosis of HFP caused by bilateral cavernous artery fistulas. We performed routine conservative treatment (compression therapy and ice application) for the patient after admission; however, 10 d later, his symptoms had not been relieved. After completion of the preoperative workup, right (severe side) selective perineal artery embolization was performed; the left cavernous artery fistula was left untreated. After postoperative continuation of conservative treatment for 72 h, the patient experienced complete penile thinning. The patient had no symptoms of erectile dysfunction over a follow-up period of 12 mo. CONCLUSION: Compared with bilateral cavernous artery fistula embolization, we believe that unilateral cavernous artery fistula embolization can achieve positive clinical efficacy and reduce the risk of postoperative erectile dysfunction secondary to penile ischemia.

19.
Neural Regen Res ; 18(4): 922-928, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204864

RESUMO

Retinal injury after blunt ocular trauma may directly affect prognosis and lead to vision loss. To investigate the pathological changes and molecular mechanisms involved in retinal injury after blunt ocular trauma, we established a weight drop injury model of blunt ocular trauma in male Beagle dogs. Hematoxylin-eosin staining, immunofluorescence staining, western blotting, and TUNEL assays were performed to investigate retinal injury within 14 days after blunt ocular trauma. Compared with the control group, the thicknesses of the inner and outer nuclear layers, as well as the number of retinal ganglion cells, gradually decreased within 14 days after injury. The number of bipolar cells in the inner nuclear layer began to decrease 1 day after injury, while the numbers of cholinergic and amacrine cells in the inner nuclear layer did not decrease until 7 days after injury. Moreover, retinal cell necroptosis increased with time after injury; it progressed from the ganglion cell layer to the outer nuclear layer. Visual electrophysiological findings indicated that visual impairment began on the first day after injury and worsened over time. Additionally, blunt ocular trauma induced nerve regeneration and Müller glial hyperplasia; it also resulted in the recruitment of microglia to the retina and polarization of those microglia to the M1 phenotype. These findings suggest that necroptosis plays an important role in exacerbating retinal injury after blunt ocular trauma via gliosis and neuroinflammation. Such a role has important implications for the development of therapeutic strategies.

20.
Neurosci Lett ; 793: 137000, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36473686

RESUMO

Ischemic stroke is an acute brain disease with a high mortality rate. Currently, the only effective method is to restore the blood supply. But the inflammation and oxidative stress induced by this approach can damage the integrity of the endothelial system, which hampers the patient's outcome. d-allose has the biological activity to protect against ischemia-reperfusion injury, however, the underlying mechanism remains unclear. Here, brain microvascular endothelial cells (RBMECs) were used as the study material to establish an IR-injury model. Cell viability of RBMECs was suppressed after hypoxia/reoxygenation (H/R) treatment and significantly increased after d-allose supplementation. RNAseq results showed 180 differentially expressed genes (DEGs) between the therapy group (H/R + Dal) and the model group (H/R), of which 151 DEGs were restored to control levels by d-allose. Enrichment analysis revealed that DEGs were mainly involved in protein processing in endoplasmic reticulum. 6 DEGs in the unfolded protein response (UPR) pathway were verified by qRT-PCR. All of them were significantly down-regulated by d-allose, indicating that endoplasmic reticulum stress (ERS) was relieved. In addition, d-allose significantly inhibited the phosphorylation level of eIF2α, a marker of ERS. The downstream molecules of Phosphorylation of eIF2α, Gadd45a and Chac1, which trigger cycle arrest and apoptosis, respectively, were also significantly inhibited by d-allose. Thus, we conclude that d-allose inhibits the UPR pathway, attenuates eIF2α phosphorylation and ERS, restores the cell cycle, inhibits apoptosis, and thus enhances endothelial cell tolerance to H/R injury.


Assuntos
Células Endoteliais , Traumatismo por Reperfusão , Humanos , Células Endoteliais/metabolismo , Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão/metabolismo , Apoptose , Encéfalo/metabolismo , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...